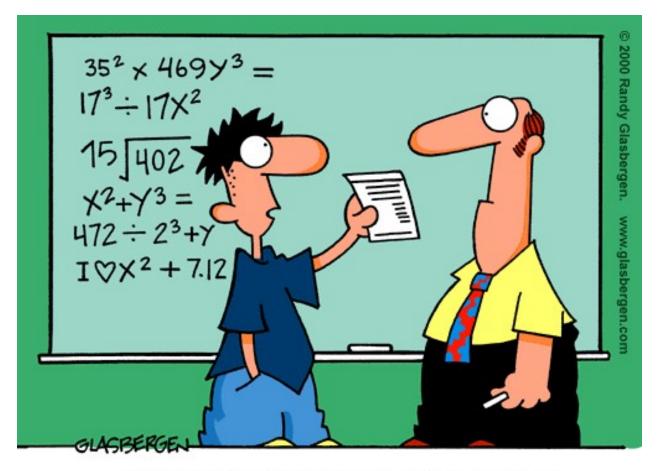
GED® Math Grab Bag – A Focus on Key Concepts and Qualitative Reasoning

A Workshop by GED Testing Service[®] Presented by Thomas Ross


Session Objectives

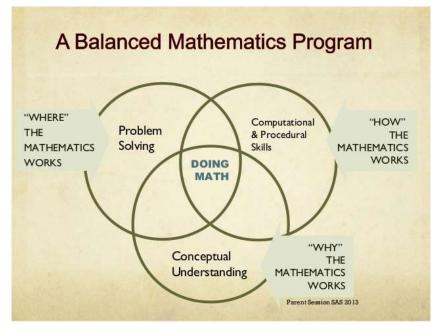
- Discuss challenges that students face in mathematics
- Review strategies and activities to help students improve their basic math skills
- Share ideas and resources

It Really Isn't Genetic

"I HAD MY DOCTOR DO A D.N.A. BLOOD ANALYSIS. AS I SUSPECTED, I'M MISSING THE MATH GENE."

Math Involves...

- •Memory
- Language
- Sequencing
- Spatial ordering
- Critical thinking
- Good problem-solving strategies
- •Number sense
- •Reasoning
- Making connections



In the Classroom, We Often...

- Introduce new concepts too rapidly
- Insufficiently support explanations and activities
- Provide insufficient practice
- Focus on facts versus concepts
- Limit access to manipulatives and
- Limit connection of skills to real-life situations

Our Students Need...

Overview of the Mathematical Reasoning Test

Overview

- One test with calculator allowed on most items
- Content
 - 45% Quantitative Problem Solving
 - 55% Algebraic Problem Solving
- Texas Instruments TI 30XS Multiview[™]
- Integration of mathematical practices

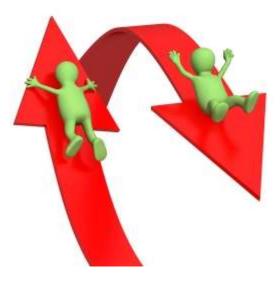
Item Types

- Technology-enhanced items
 - Multiple choice
 - Drag-drop
 - Drop-down
 - Fill-in-the-blank

Understanding Skills Students Have

Low Intermediate Basic Education	High Intermediate Basic Education	Low Adult Secondary Education
(4-5.9 GLE)	(6-8.9 GLE)	(9-10.9 GLE)
Students can perform with high accuracy all four basic math operations using whole numbers up to three digits and can identify and use all basic mathematical symbols.	Students can perform all four basic math operations with whole numbers and fractions; can determine correct math operations for solving narrative math problems and can convert fractions to decimals and decimals to fractions; and can perform basic operations on fractions.	Students can perform all basic math functions with whole numbers, decimals, and fractions; can interpret and solve simple algebraic equations, tables, and graphs and can develop own tables and graphs; and can use math in business transactions.

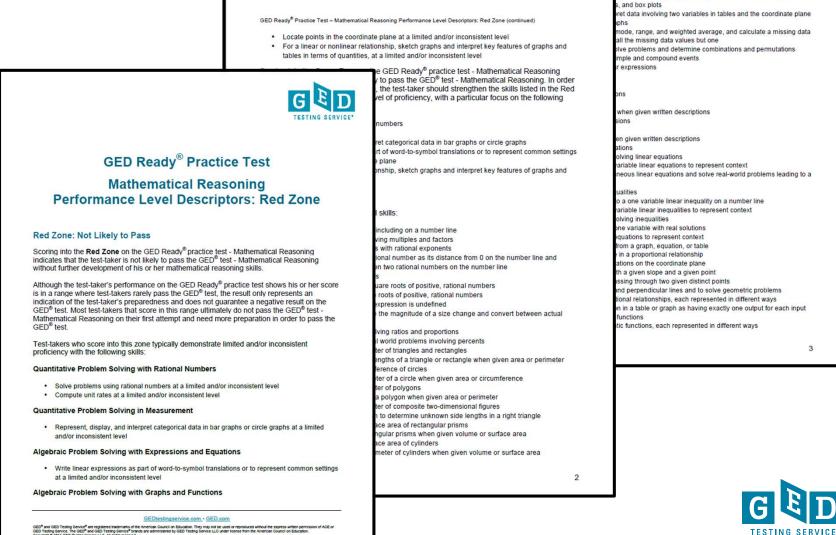
Three Score Level Indicators on GED Ready®


Not Likely to Pass	Too Close to Call	Likely to Pass
100-133	134-144	145-200

Test-taker Scoring Too Close to Call

The Student's performance

- Is typically based on a test-taker's consistency in demonstrating skills, or
- May be based on the level of complexity of materials that a testtaker can handle
 - Lower-performing students may be
 - Successful with simpler materials and
 - Less successful with those that are more complex



Level of Consistency in Demonstrating Skills

Not Likely to	Too Close to	Likely to
Pass	Call	Pass
Quite Inconsistent	Perform about 50% - 70%	Above 70%

What Skills Do Students Have and What Do They Need?

GED Ready[®] Practice Test - Mathematical Reasoning Performance Level Descriptors: Red Zone (continued)

- Compute the volume and surface area of right prisms
- Solve for height or side lengths of right prisms when given volume or surface area
- Compute the volume and surface area of right pyramids and cones
- Solve for side lengths, height, radius, or diameter of right pyramids and cones when given volume or surface area
- Compute the volume and surface area of spheres
- Solve for radius or diameter of spheres when given volume or surface area
- Compute the volume and surface area of composite three-dimensional figures

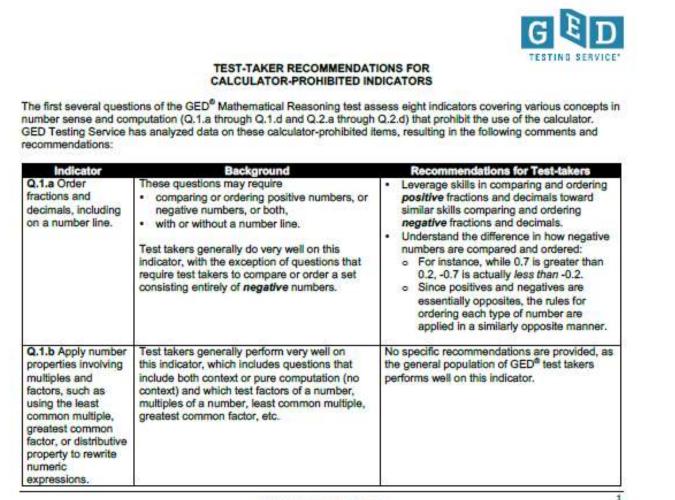
ret data involving one variable plots on the real number line

12

C-R-A – Essential for Understanding

Concrete	Representational	Abstract	
Students manipulate hands- on, concrete materials	Students draw and observe diagrams, or watch the teacher touching and moving hands-on materials	Numbers and mathematical symbols	
	$ \begin{array}{c} 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 3\\ $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

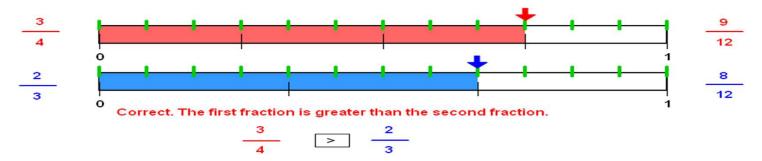
So...How Can You Help Students "Build" Math Skills and Become a GED® Test Passer?


Reinforce the Basics

GED Calculator-Prohibited Indicators

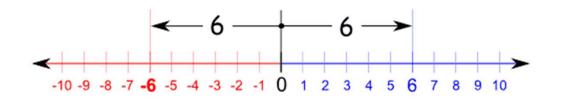
https://www.gedtestingservice.com/uploads/files/09738c12fe4e4accd9a16bab7cb99a3c.pdf

GEDtestineservice.com * GED.com


100 and 100 Testing Service" are registered to be transmit council on Hazartan. They may not be used or reproduced efforts the operative setting persons of ACL or 100 Testing Service. The 500° and 500 Testing Service bands are advected and by 100 Testing Service and an AcL or 100 Testing Service. The 500° and 500 Testing Service are advected are advected

17

Make Sure Students Can Use a Number Line

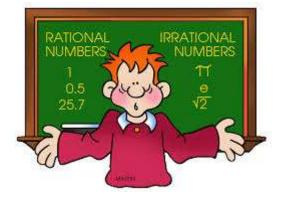

The fractions 3/4 and 2/3 are pictured with number lines below:

Check Students Understanding of Absolute Value

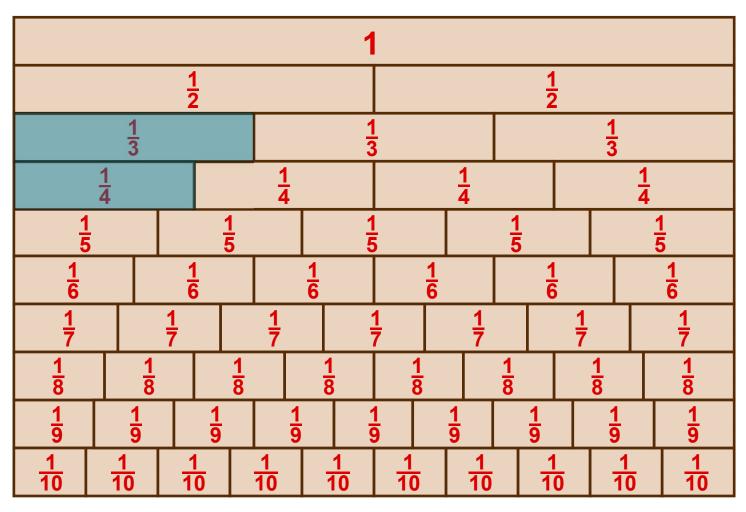
Absolute Value indicates how far a number is from 0.

- Remove any negative sign and think of all numbers as positive |-5| = 5
- Recognize symbol used to represent absolute value |7| = 7

"6" is 6 away from zero, and "-6" is **also** 6 away from zero.


So the absolute value of 6 is 6, and the absolute value of -6 is also 6

Operations on Rational Numbers


Recommendations for Test-Takers

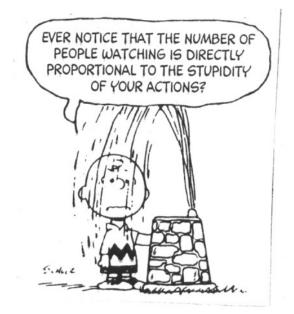
- Be able to:
 - Multiply and divide with decimals
- Compute
 - With fractions, mixed numbers, and negative numbers
 - Using order of operations

Fraction Tiles

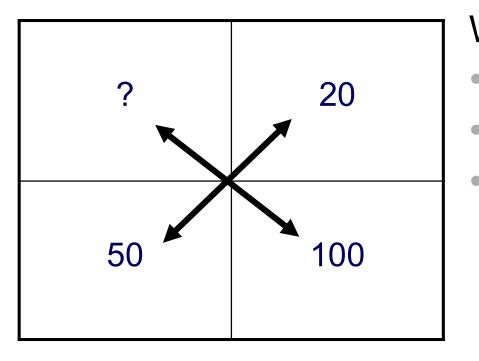
What is more, 1/4 or 1/3? What is more, 1/9 or 1/10?

Rules of Exponents

	Rule	Example
1	$x^1 = x$	5 ¹ = 5
2	$x^{0} = 1$	$5^0 = 1$
3	$x^{-1} = \frac{1}{x^1}$	$5^{-1} = \frac{1}{5}$
4	$(x^m)(x^n) = x^{m+n}$	$(x^2)(x^3) = x^{2+3} = x^5$
5	$\frac{x^m}{x^n} = x^{m-n}$	$\frac{x^3}{x^2} = x^{3-2} = x^1$
6	$(x^m)^n = x^{(m)(n)}$	$(x^3)^2 = x^{(3)(2)} = x^6$
7	$(xy)^n = x^n y^n$	$(xy)^3 = x^3y^3$
8	$(\frac{x}{y})^n = \frac{x^n}{y^n}$	$\left(\frac{x}{y}\right)^3 = \frac{x^3}{y^3}$
9	$x^{-n} = \frac{1}{x^n}$	$x^{-2} = \frac{1}{x^2}$


Percents, Ratios, and Proportions – What's the Problem?

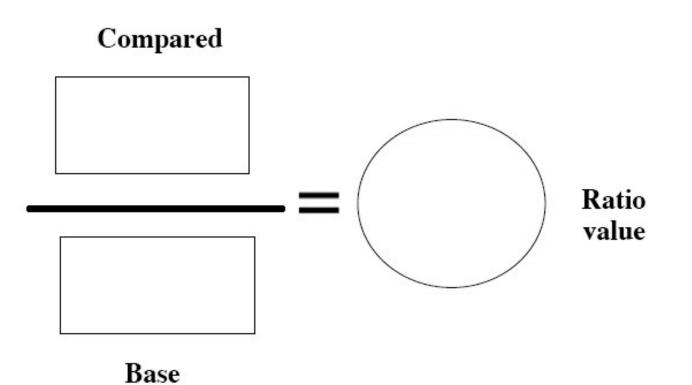
Percent means "out of 100"



- Ratio describes the part to part relationship
- Proportion describes the part to whole relationship

Calculating Percents

What is 20% of 50?


•20 x 50 = 1000

$$1000 \div 100 = 10$$

Ratio and Proportion – Use Graphic Organizers

Ratio Problem

Provide a "Concrete" Example

Ratios can have more than two numbers!

For example concrete is made by mixing cement, sand, stones and water.

A typical mix of cement, sand and stones is written as a ratio, such as 1:2:6.

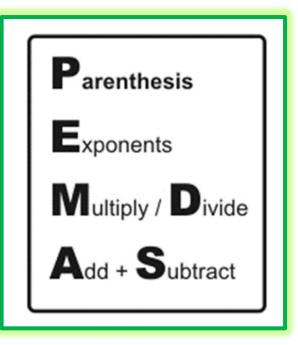
We can multiply all values by the same amount and still have the same ratio.

10:20:60 is the same as 1:2:6

So when we use 10 buckets of cement, we should use 20 of sand and 60 of stones.

https://www.mathsisfun.com/algebra/proportions.html

Misconceptions about Order of Operations


Misconception 1 - All multiplication should happen before division.

Incorrect	Correct
12÷3×4	12÷3×4
12÷12	4×4
1	16

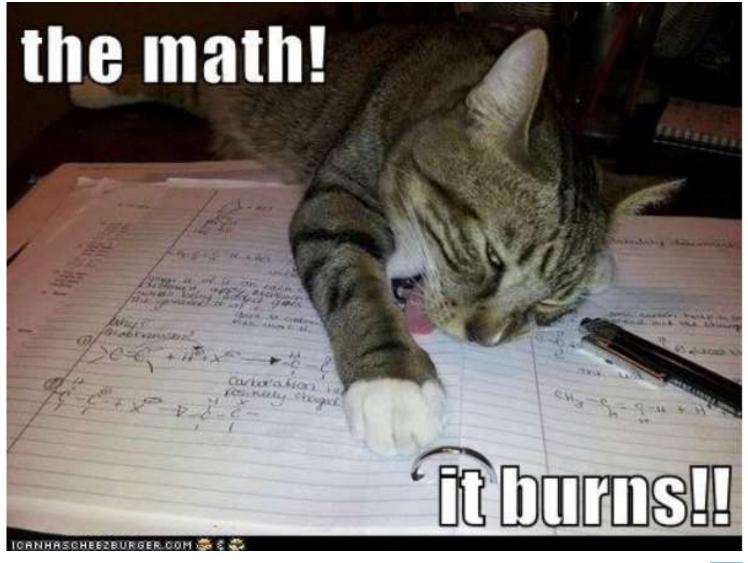
Misconception 2 – All addition comes before subtraction.

Incorrect	Correct
4+10-5+8	4+10-5+8
14-13	14-5+8
1	9+8
	17

GROUPINGS () { } [] EXPONENTS N² MULTIPLY/DIVIDE ÷/× (LEFT TO RIGHT) SUBTRACT/ADD +/-(LEFT TO RIGHT)

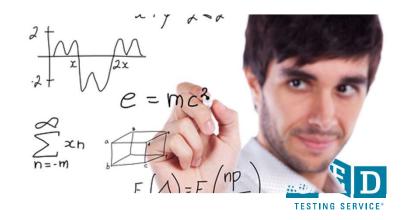
The Challenge

- Increase instruction on problem-solving strategies
- Incorporate close-reading strategies into the math classroom
- Increase emphasis on geometric and algebraic thinking
- Provide instruction in higher-order mathematics
- Shift focus from "rules or processes" of mathematics to deeper understanding of "why"
- Have high expectations of all students



Reading and Reasoning in Mathematics

Steps to Success



Analysis of Math Challenges

In Mathematical Reasoning, items require:

- Application and development of quantitative and algebraic reasoning skills
 - Grounded in real-world examples
 - Beyond rote application of formulas and/or procedural steps
 - The "why" and "how" of math
- Strong critical reading and thinking skills
 - What is the question asking?
 - What heuristics can I use?
 - Is the answer reasonable?

Two Essential Strategies

Helping students learn *how to learn* is critical to aiding the development of higher-order thinking skills

- Modeling is one way to teach students how to learn
- Scaffolding allows students to practice with diminishing support—to build confidence and competence

First Read: Read for Understanding

Second Read: Identify a Problem-Solving Process

Third Read: Solve the Problem and Check for Reasonableness

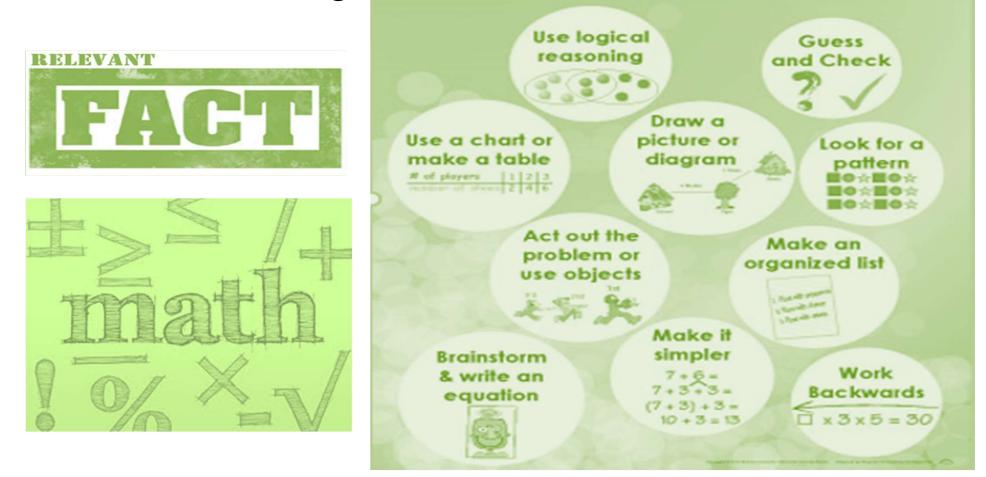
32

Miller, P. and Koesling, D. "Mathematics Teaching for Understanding: Reasoning, Reading, and G Formative Assessment. Danvers, MA

First Read: Read for Understanding

- Read through the problem aloud noting your reactions to what you're reading.
- What vocabulary do you not know?
- What's the real-world context of the problem?
- Is there a picture that can help you visualize the problem?
- What questions are being asked?

Miller, P. and Koesling, D. "Mathematics Teaching for Understanding: Reasoning, Reading, and Formative Assessment." Danvers, MA

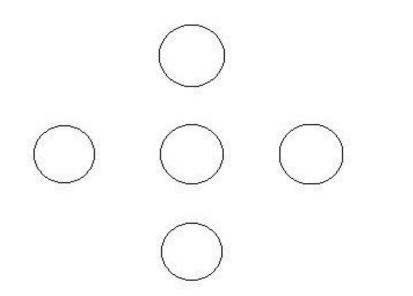


Second Read: Identify a Problem-Solving Process

- What is the pertinent information in this problem?
- What problem-solving strategies could I use?
- Which of those problem-solving strategies is best suited for this problem?
- How will I represent the problem in the symbolic language of mathematics?
- What mathematical details will I select as I reason and solve this problem?

Miller, P. and Koesling, D. "Mathematics Teaching for Understanding: Reasoning, Reading, and Formative Assessment." Danvers, MA

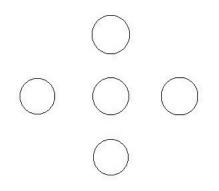
Second Read: Identify a Problem-Solving Process



Miller, P. and Koesling, D. "Mathematics Teaching for Understanding: Reasoning, Reading, and Formative Assessment." Danvers, MA

Strategy – Guess and Check

Copy the figure below and place the digits 1, 2, 3, 4, and 5 in the circles so that sums across (horizontally) and down (vertically) are the same.



Guess and Check

Copy the figure below and place the digits 1, 2, 3, 4, and 5 in the circles so that sums across (horizontally) and down (vertically) are the same.

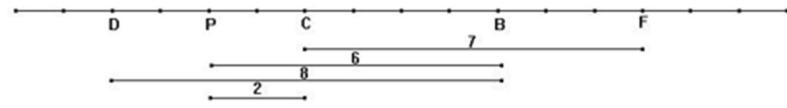
Possible solutions:

Strategy – Draw a Diagram

In a stock car race, the first five finishers in some order were a Ford, a Pontiac, a Chevrolet, a Buick, and a Dodge.

- The Ford finished seven seconds before the Chevrolet.
- The Pontiac finished six seconds after the Buick.
- The Dodge finished eight seconds after the Buick.
- The Chevrolet finished two seconds before the Pontiac.

In what order did the cars finish the race? What strategy did you use?

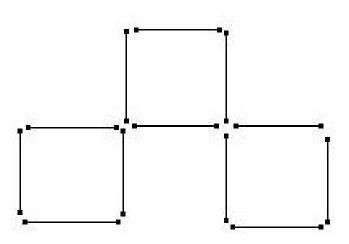


Draw a Diagram

In a stock car race, the first five finishers in some order were a Ford, a Pontiac, a Chevrolet, a Buick, and a Dodge.

- The Ford finished seven seconds before the Chevrolet.
- The Pontiac finished six seconds after the Buick.
- The Dodge finished eight seconds after the Buick.
- The Chevrolet finished two seconds before the Pontiac.

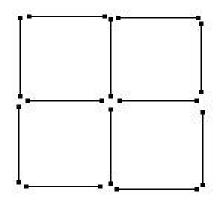
In what order did the cars finish the race? What strategy did you use?



The order is: Ford, Buick, Chevrolet, Pontiac, Dodge.

Strategy – Act It Out or Use Objects

The figure shows twelve toothpicks arranged to form three squares. How can you form five squares by moving only three toothpicks?



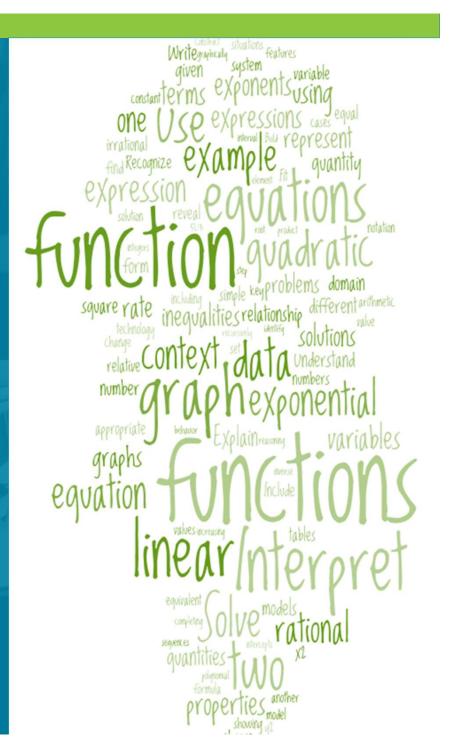
Act It Out or Use Objects

The figure shows twelve toothpicks arranged to form three squares. How can you form five squares by moving only three toothpicks?

Answer: One of the squares is formed by the outer boundary of the arrangement. There was no requirement that each of the five squares must be congruent to each of the others.

Third Read: Solve the Problem and Check for Reasonableness

- Now that I understand the problem's content, how can I best use my math skills to solve the problem?
- Am I answering the right question?
- How should the answer to the question be expressed?



Miller, P. and Koesling, D. "Mathematics Teaching for Understanding: Reasoning, Reading, and Formative Assessment." Danvers, MA

Help Students Build Math Vocabulary

Tiered Vocabulary

Tier 3

Domain-specific

academic vocabulary

Tier 2

High-Utility academic vocabulary found in many content texts, crosscurricular terms

Tier 1

Everyday words, familiar to most students primarily learned through conversation

TESTING SERVICE®

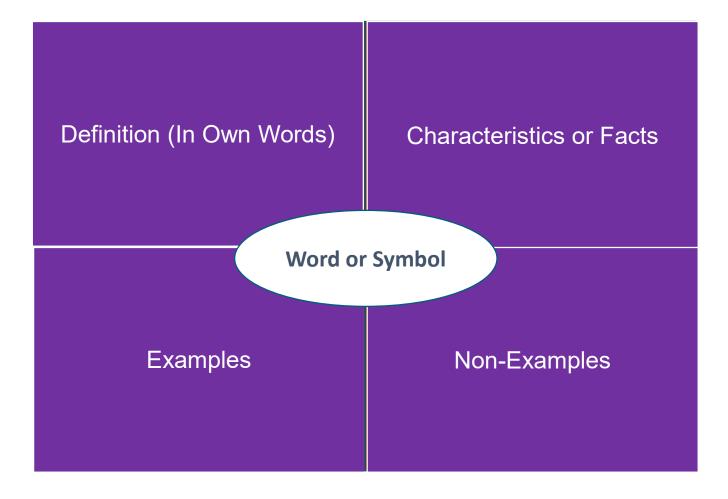
Do Your Students Know These Words?

Tier 2 Vocabulary Words for Math

Analyze	Compare	Contrast
Demonstrate	Describe	Argument
Conclusions	Evidence	Determine
Develop	Evaluate	Explain
Identify	Infer	Draw
Distinguish	Suggest	Interpret
Organize	Illustrations	Predict

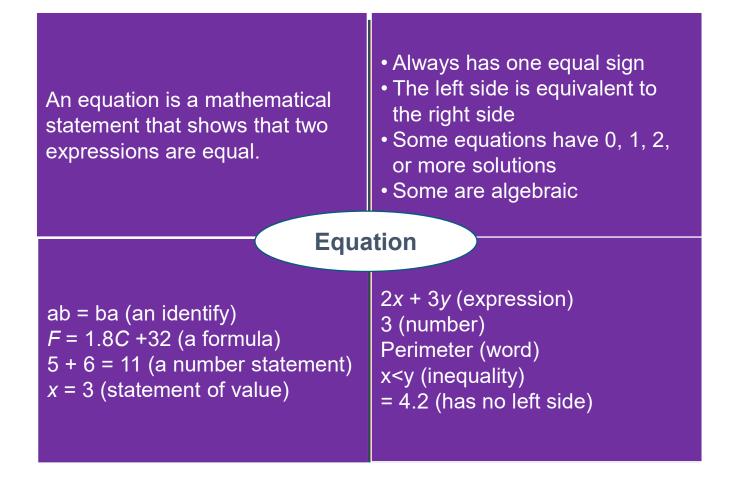
http://soltreemrls3.s3-website-us-west-2.amazonaws.com/marzanoresearch.com/media/documents /reproducibles/vocab-common-core/sourcelistforpartIIandIIIterms.pdf

How About These Words?


Tier 3 Vocabulary Words for Math

Absolute value	Additive inverse	Algorithm	
Attribute	Constant	Distance formula	
Exponent	Function	Dependent variable	
Independent variable	Linear	Numerical expression	
Profit	Property	Proportional gain	
Rate of change	Strategy	Value	

http://soltreemrls3.s3-website-us-west-2.amazonaws.com/marzanoresearch.com/media/documents /reproducibles/vocab-common-core/sourcelistforpartIIandIIIterms.pdf


Building Vocabulary

Frayer Model – (Barton and Heidema, 2002)

Tools for Building Vocabulary

Frayer Model – (Barton and Heidema, 2002)

What is it?

G B D TESTING SERVICE*

Frayer Model – (Barton and Heidema, 2002)

Advice

Watch for Obstacles and Opportunities

Math Misconceptions

- 1. A number with three digits is always bigger than one with two
- 2. When you multiply two numbers together, the answer is always bigger than both the original numbers
- 3. Which fraction is bigger: 1/3 or 1/6?
- 4. Common regular shapes aren't recognized for what they are unless they're upright
- 5. The diagonal of a square is the same length as the side?

More Math Misconceptions

6. To multiply by 10, just add a zero

7. Proportion: three red sweets and two blue

8. Percentages can never be bigger than 100

9. Misreading scales

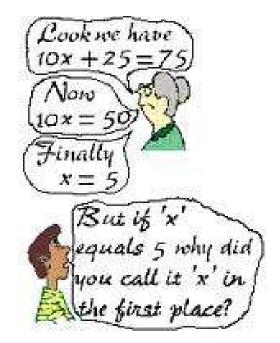
10. An exponent requires that you multiply the base by the exponent (example: $2^3 = 3^2$)

Getting Down to Basics with Algebraic Reasoning

What About Algebra?

Key Differences Between Likely to Pass and the Red Zone

Students


• Have a much smaller skill repertoire, e.g.

- Tend to be able to work with equalities but not inequalities
- Tend to have very weak graphing skills
- Are far less able to apply math skills to real-world situations or interpret real-world skills mathematically
- Are far less consistent in their performance (likely to be "hit or miss")

Remember ...

- Arithmetic is doing something to numbers to get an answer.
- Algebra is exploring the relationships between numbers.

Symbolic Notation

Sign	Arithmetic	Algebra
= (equal)	And the answer is	Equivalence between two quantities
+	Addition operation	Positive number
-	Subtraction operation	Negative number

Algebraic Misconceptions

1)
$$a + a + a + a = 4a$$

2) $3a \times 2b = 5ab$
3) $c \times c = 2c$
4) $5y - y = 5$
5) $3(2k + 3) = 6k + 6$

Have Fun!

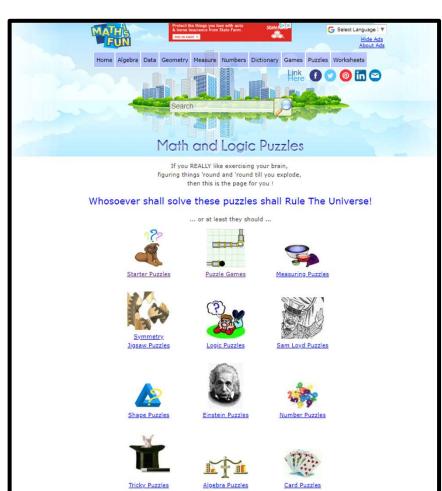
TESTING SERVICE

It's easy to identify people who can't count to ten. They're in front of you in the supermarket express lane.

Cool Funny Quotes.com

Use Brainteasers to Develop Reasoning Ability

- Engages students' minds in a reasoning process
- Encourages students to play and have fun
- Uses humor to increase interest and motivation
- Decreases math anxiety
- Focuses on reasoning not just the answer


"Brainteasers are therapy for the mind."

Stogsdill, Gary. "Being Reasonable: Using Brainteasers to Develop Reasoning Ability in Humanistic Mathematics courses," Journal of Humanistic Mathematics, Volume 4 Issue 2 (July 2014).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Re-post when you find the mitsake

Math for fun an	d glory			
	1 the basics sics, starting with Spirals, Fibonacci and being a plant		Let's go	
Course summary Doodling in Math and more	Source Doodling in Math and more			
Puzzles AMC 10	Spirals, Fibonacci and being a plant Doodling in math Hexaflexagons About pi and tau	Singing (and noises) Mobius strips Thanksgiving math Infinity		
Math warmups	Puzzles	Other cool stuff		
	Brain teasers Transformation Puzzles			

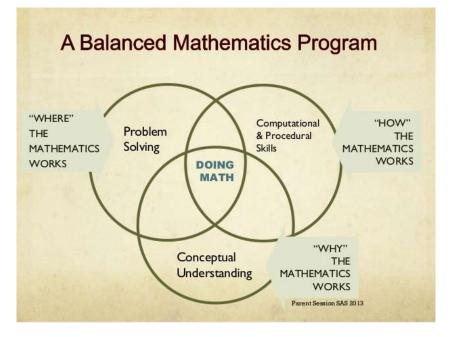
It's Your Turn!

A little boy goes shopping and purchases 12 tomatoes. On the way home, all but 9 get mushed and ruined. How many tomatoes are left in a good condition?

Nine

Eggs are \$0.12 a dozen. How many eggs can you get for a dollar?

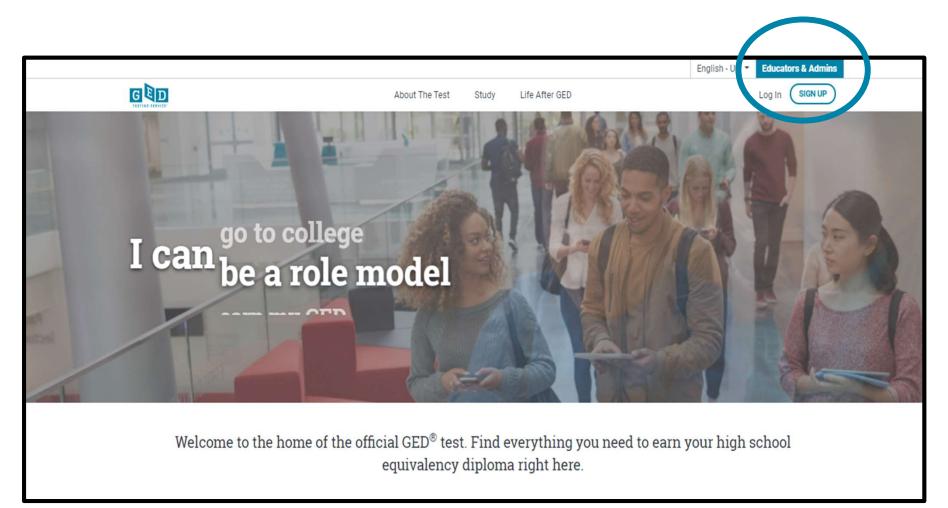
100 eggs, at one penny each



Math Bender Time!

There are 6 pails, 3 of the pails are filled with water. Can you move only one pail and make a pattern of: full pail, empty pail, full pail, empty pail?

Our Students Need...



https://ged.com

Thank you!

Communicate with GED Testing Service[®] communications@ged.com

